Encoding Scenarios with Design Information Framework for the Generation of Multiple Aspect Models for System Implementation

Youn-kyung Lim
Institute of Design, Illinois Institute of Technology
350 N. LaSalle St.
Chicago, IL 60610 USA

and

Keiichi Sato
Institute of Design, Illinois Institute of Technology
350 N. LaSalle St.
Chicago, IL 60610 USA

ABSTRACT

Multidisciplinary work is inevitable in designing a complex system. A system design is the output of integrating multiple aspects from the multidisciplinary teamwork. However, the communication and association between those multiple aspects has been one of the most difficult tasks in design. By introducing the Design Information Framework (DIF) as a unified information platform, sharing and interpreting multiple aspects from different disciplines was enabled. Scenarios have been used for describing new situations with new system concepts. DIF provided a mechanism of deconstructing scenarios to generate multiple aspects that could effectively be associated with each other. A case study of designing a cellular phone in the context of its use in a car environment was conducted to demonstrate this mechanism and function of DIF for generating multiple aspects for system implementation.

Keywords: Scenario-Based Design, Information Systems, System Design, System Implementation, Multidisciplinary Teamwork

1. INTRODUCTION

The system development process requires collaboration among multidisciplinary team members in natural sciences, business, management, marketing, art, and others. The multidisciplinary teamwork is even more significant when design problems become complex [7]. In such situations, the integration of multidisciplinary information is required to satisfy diverse requirements of developing systems. As systems become more complex, a large amount of information is necessary for the development, and one system may consist of multiple products. In this research, a mechanism of representing information from multidisciplinary teams for effectively interpreting each other’s concept in the system development process has been developed. Design Information Framework (DIF) was introduced as a basic tool for managing information. This paper describes the research background, context, and methodology of this mechanism. It also describes the system implementation using DIF.

Figure 1: DIF in a design process as a platform

Proceedings of the 7th World Multi-conferences on Systemics, Cybernetics, and Informatics, Orlando, FL, July, 2003
platform for this mechanism. It is a unified and shared information platform to enable system developers to organize and manipulate information throughout the development process (Figure 1). It can then be used to generate models that represent various aspects of information created by multidisciplinary teams. We decided to call the model that represents each aspect as “aspect model.”

DIF represents information on two levels. The lower level of representation consists of Design Information Primitives (DIPs) that cannot be further decomposed into smaller conceptual units. The higher level of representation consists of Design Information Elements (DILs) which are composed of those DIPs [6]. The information elements in DIF therefore are DILs and DIPs (Figure 1).

DIF has an open structure that does not limit the possible types of information. Each design project requires a different set of information elements to be represented in DIF, and this set is called as Project-based DIF (P-DIF). A P-DIF can be determined by the nature of the project and the applied methodology. For example, if a scenario-based design method is used for an interactive system design project, a P-DIF for that project can include the information elements such as goals, activities, settings, and conditions, which correspond to theatrical play scripts that are structured with actors, events, scenes, and props.

In the domain of software development, multidisciplinary teamwork is essential. Scenarios are one of effective means for communication because of their format understood by every audience. There have been many attempts to deconstruct scenario content for the use of the system implementation purpose by narrowing the gap between specification and implementation. This requires integration of various aspects of system development [3]. However, the deconstructed contents are used only for specific purposes or aspects of system implementation. This makes it very difficult to associate all dispersed methods for system implementation.

In this regard, the scenario encoding mechanism utilizing DIF can solve this problem because it provides a generic format for encoding and re-representing the narrative data in various formats. This is important in terms of diverse teams’ participation in the implementation process of a system, such as human factor, AI, system engineering, and software engineering teams. Their ability to communicate is one of the key issues for encoding and re-representing the narrative data in various formats. This is important in terms of diverse teams’ participation in the implementation process of a system development.

A case study was conducted to develop and demonstrate the mechanism for this purpose. For this case, cellular phone use in a vehicle is selected to analyze the cognitive load of the driver. It requires various aspects of a system for its implementation such as product-hardware and product-software. In this case, how DIF supports the construction of consistency between various aspects of product implementation through scenarios is the key issue. This case study demonstrates how the DIF-enabled mechanism of aspect model construction can easily transform one aspect model to another in order to facilitate effective communication between development team members who may have different disciplinary backgrounds.

2. SCENARIO CONSTRUCTION MECHANISM WITH MULTIPLE ASPECT MODELS

Before introducing the case study, the mechanism of constructing scenarios with a P-DIF and aspect models should be explained. P-DIFs provide parameters to construct appropriate aspect models, and the aspect models then inform the content of a scenario when re-organized into building blocks (Figure 2). A typical scenario building block is defined by one of the following four information categories [2][3]:

- **Actor Profile**: description about agents or actors who are the main subjects of the scenarios
- **Scene Setting**: description of the relationships among physical elements in the situation or among the actors involved in the scenario
- **Goals**: what the actors want to achieve
- **Events**: the main contents of the scenarios, describing actors’ actions

For example, a layout model describes environmental information in a scenario. User profiles and a role-activity model provide information about actors such as their jobs, roles, and basic relationships with other actors. This information sets the scene for the scenario and provides background information on actors. When the scene influences the outcome of events, it is also embedded into the main story.

The body of the scenario is constructed using events and actors’ goals. Goals drive actors’ basic behaviors in a given event, and every scenario involves at least one actor and one goal. A hierarchical task analysis (HTA) model provides the structure of the event in the scenario along with an actor’s goal and task structure.

In addition to using aspect models as references for basic contents of a scenario, another benefit of using these models lies in generating further insights from the integration of the models. The problems found in use situation can be embedded in part of a scenario. The problem identified in a specific aspect, such as a flow of information, can be viewed in other aspects, like an activity sequence or a spatial setting. Through this integration process, we can systematically interpret a problem in a holistic way.
Figure 3: Current Scenario and New Scenario of Using a Cellular Phone in a Car

Concerned Aspects

Current Scenario

User Profile Aspect
Jane, who is a female college student, is driving a car now. She has two and half year experience of driving. She is also a female college student.

Outside Condition Aspect
Weather outside in Chicago is not raining but a little cloudy, and very cold now. There is no much traffic on the road.

In the car, there are hanging accessories. Jane and Susan both have a cell phone with them. Jane’s cell phone is on the right side of her seat, and Susan’s cell phone is in her bag, which is on Susan’s lap.

While Jane is driving, Susan talks to Jane about her daily life. Jane listens passenger’s talking.

- **Scene 1: driver’s calling to someone in the car**
 While driving, Jane needs to call her friend, Sarah. Jane picks up her cell phone with her right hand. Jane moves her cell phone to her left hand. Jane looks for the number that stores Sarah’s phone number by pressing several buttons on her cell phone because she cannot memorize the short key number in her cell phone. The numbers stored are hard to memorize even though enable the easy access.
 While pressing the buttons on her cell phone, Jane used her both hands. There is a moment that the driver does not grab the handle. Jane used her right hand to look for the number, and used her left hand to connect a call to Sarah. Jane puts her cell phone on her right hand.
 While Jane starts talking on the phone, Susan gets interested in what is going on outside of the car.

- **Scene 2: passenger’s involvement in the driver’s phone conversation**
 Susan starts to get bored and becomes not comfortable to be sitting without doing anything while Jane is on the phone. Susan also knows Sarah who is in the conversation with Jane through the cell phone. Susan abruptly shouts to Sarah near Jane’s cell phone to get involved in the conversation between Jane and Sarah. Jane was a little bit surprised with Susan’s unexpected involvement and laughs brightly about it. Jane starts hearing both sides talking and transfers them to both sides, Susan and Sarah while driving and on the phone. Passengers easily get bored while a car is moving if a driver talks to someone else on the phone. Unexpected involvement by the passenger might cause some safety problems.

- **Scene 3: unexpected happening outside of the car**
 In the outside, a car is trying to go through in front of Jane’s car while Jane is on the phone. Jane explains the situations going outside to Sarah. The person on the phone who talks with the driver is better to know about what is happening on the driver’s side for safety. Susan describes what is happening outside to Jane for safety. Jane tries to move her car a little bit to handle the situation, but it is not easy while on the phone. Fortunately, the car outside goes away without making any problems.

New Scenario

User Profile Aspect
Jane, who is a female college student, is driving a car now. She has two and half year experience of driving. She is also a female college student.

Outside Condition Aspect
Weather outside in Chicago is not raining but a little cloudy, and very cold now. There is no much traffic on the road.

In the car, there are hanging accessories. Jane and Susan both have a cell phone with them. Jane’s cell phone is on the right side of her seat, and Susan’s cell phone is in her bag, which is on Susan’s lap.

While Jane is driving, Susan talks to Jane about her daily life. Jane listens passenger’s talking.

- **Scene 1: driver’s calling to someone in the car**
 While driving, Jane needs to call her friend, Sarah. Jane picks up her cell phone with her right hand. Jane moves her cell phone to her left hand. Jane puts her cell phone on her right hand.
 Jane pushes ‘talk’ button for a second, and the phone asks the spell of the name she wants to call. She speaks the spell of Sarah’s name, “c”, “a”, “r”, “a”, “h”, and “i” to the phone. The cell phone recognizes the pronunciations of alphabets, and matches up the spells with the stored names. The phone number of Sarah is selected and starts to connect to Sarah. Jane does not need to take a look at the cell phone key pad to connect a call to Sarah.
 While Jane starts talking on the phone, Susan gets interested in what is going on outside of the car.

- **Scene 2: passenger’s involvement in the driver’s phone conversation**
 Susan starts to get bored and becomes not comfortable to be sitting without doing anything while Jane is on the phone. Susan also knows Sarah who is in the conversation with Jane through the cell phone. Susan abruptly shouts to Sarah near Jane’s cell phone to get involved in the conversation between Jane and Sarah. Jane was a little bit surprised with Susan’s unexpected involvement and laughs brightly about it.
 Jane presses the speaker phone button to change the cell phone mode to the speaker phone mode. The cell phone turns on the speaker and the microphone to enable the speaker phone function. Jane puts her phone on the right side of her seat to make Susan recognize that the phone is now on the speaker phone mode. Whatever Sarah talks is now heard by both Jane and Susan. Sarah can also hear whatever Jane or Susan says to her through Jane’s cell phone.

- **Scene 3: unexpected happening outside of the car**
 In the outside, a car is trying to go through in front of Jane’s car while Jane is on the phone. Jane presses a camera button to show outside happenings to Sarah to share what is going on at her side for safety. Jane puts the cell phone at the front dash board to locate the camera to outside, and Jane moves her car a little bit to handle the situation. The camera on the cell phone starts to take the video of outside and sends the video out to Sarah’s phone.

- **Scene 4: passenger is NOT bored**
 Because the cell phone is now on the speaker phone mode, Susan does not feel isolated while Jane is talking to Sarah. Susan also talks to Sarah, and also Sarah hears what Jane and Susan talks to each other.

(...
3. COMPARABLE SCENARIOS FOR THE CURRENT SYSTEM AND THE NEW SOLUTION

For the case study, a current situation scenario was created based on the scenario development mechanism explained in the previous section. A scenario should include the background information and the story of an event. The background information was constructed according to the condition/status aspect of three domains: a driver, a vehicle, and driving environment. Driver variables included level of training, experience, attentiveness, or driving time. The event part of the scenario was constructed on the structure of tasks related to cellular phone use. Figure 3 shows both current situation scenarios and new situation scenarios focusing on the use of a cellular phone while driving. The aspects considered for creating the current scenario provide a framework of creating a new scenario (Figure 3).

Four design solutions have been generated to solve problems raised in the current situation: (1) an alphabet sound interpreter to connect a call without looking up the name of the receiver; (2) a speaker phone mode enabler to allow multiple people to talk together or for hands-free talking; (3) a camera

Table 1: A P-DIF for Encoding the Scenario to Construct the Selected Models

<table>
<thead>
<tr>
<th>Selected models</th>
<th>DILs (DIPs or DILs)</th>
<th>A part of encoded data from the scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Knowledge Structure (TKS)</td>
<td>Object Description (Entity, Attributes, Genericity Attribute, Centrality Attribute)</td>
<td>Obj₁ (address book, easy-to-access, specific, crucial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obj₂ (speaker, small, specific, optional)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obj₃ (microphone, small, specific, optional)</td>
</tr>
<tr>
<td></td>
<td>Goals (Agent Entity, Act, Object Entity, Time)</td>
<td>Goₐ₁ (driver, connect, a call to someone, while driving)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goₐ₂ (driver, pull out, phone number, while driving)</td>
</tr>
<tr>
<td></td>
<td>Goal Relationships (Goal, Sub-goal)</td>
<td>GoR₁ (Goₐ₁, Goₐ₂)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GoR₂ (Goₐ₁, Goₐ₃)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GoR₃ (Goₐ₂, Goₐ₃)</td>
</tr>
<tr>
<td>Classes-Responsibilities-Collaborations (CRC) model</td>
<td>Collaborations (Class Entity, Collaborating Entity)</td>
<td>Col₁ (alphabet sound recognizer, voice receiver)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Col₂ (alphabet interpreter, alphabet sound recognizer)</td>
</tr>
<tr>
<td></td>
<td>Responsibilities (Class Entity, Function, Collaborating Entity)</td>
<td>Res₁ (alphabet sound recognizer, recognize alphabet pronunciations, microphone)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Res₂ (alphabet interpreter, translate alphabet sounds to alphabet letters, alphabet sound recognizer)</td>
</tr>
<tr>
<td>Functions-Behaviors-States (FBS) model</td>
<td>Functions (Product Entity, Act, Object Entity, Act Attribute)</td>
<td>Fun₁ (cell phone, ask, the spells of the name to call)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fun₂ (cell phone, recognize, the pronunciations of alphabets, clearly)</td>
</tr>
<tr>
<td></td>
<td>Function Relationships (Function, Relationship Attribute, Related Function)</td>
<td>FuR₁ (Fun₁, conditioned-by, Fun₁)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FuR₂ (Fun₂, conditioned-by, Fun₁)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FuR₃ (Fun₁, decomposed-into, Fun₂)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FuR₄ (Fun₂, decomposed-into, Fun₂)</td>
</tr>
<tr>
<td></td>
<td>Function-Object Relationships (Function, Entities)</td>
<td>FuO₁ (Fun₁, alphabet sound recognizer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FuO₂ (Fun₂, alphabet interpreter)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FuO₃ (Fun₂, speaker)</td>
</tr>
</tbody>
</table>
attached to the phone to show the caller's environmental surroundings to the receiver while talking; (4) a 'talk' button on the outside of the phone that can be pressed sight unseen. In Figure 3, problems and situations that justify a need for these changes are described. The new scenario clearly shows how the current situation is improved by the new solutions.

4. CONSTRUCTING ASPECT MODELS FROM DIFFERENT DISCIPLINES FOR SYSTEM IMPLEMENTATION

As mentioned above, the new scenario is encoded with the DIF in order to construct various kinds of models that support the implementation of the product. The following methods were selected as examples of various approaches for the implementation of a new product: object-oriented specifications [1] for software engineering, TKS (Task Knowledge Structure) for the human factors [4], and FBS (Function-Behavior-State) model [8] for mechanical/hardware engineering. These different models can be understood as examples of aspect models.

Use of scenarios for object-oriented approaches is common in software development. Known and observable tasks and objects in envisioned scenarios of use are easily transformed into software objects and their functions. The terms, “responsibilities” and “collaborations” that correspond to the functions of objects, define the structure of a software system effectively with the object-oriented concept [3]. This design approach is called “responsibility-driven design.” The most popular sources of using scenario approaches for object-oriented software implementation are use cases. With the construction of specific scenarios from the use cases, CRC (Class-Responsibility-Collaboration) cards can be produced for the responsibility-driven design approach [9]. In the CRC cards, classes represent objects in scenarios, responsibilities represent the primary functions of a class, and collaborations describe other classes that a certain class should interact with in order to accomplish designated responsibilities.

Besides this approach, task analysis models such as Task Knowledge Structures (TKS) with Knowledge Analysis of Tasks (KAT) for software development from the human factor-oriented viewpoint especially for user interface design are important examples of the methods that support system design and implementation [4][5]. Task Knowledge Structures (TKS) provide a framework for describing tasks in terms of goals, subgoals, procedures, objects and actions. The TKS approach assumes that human activity associated with tasks follows a structured pattern determined by the organization, domain, task, and person's experience. It further assumes that people develop task knowledge from these structured patterns. The TKS is a framework for modeling this knowledge. It contains declarative knowledge about organization, context, goal structure, and procedural knowledge of how task activities are carried out. In this method, the TKS for the current tasks with current systems are used as a basis for constructing a “design task model,” a new version of the task model for new design concepts. From the design task model, designers can produce interface models that describe interaction between users and system dialogs. Desirable inputs in specific states and outputs for these inputs can be designed and determined using this model.

The FBS model is an effective model for describing a system function structure to support its implementation. In this model, the meanings of functions and behaviors are clearly distinguished. Behavior can be defined objectively as transitions of physical states and therefore can be derived from physical states of an entity and its environment. However, function is related not only to physical behavior but also to the designers' perception of behavior. It is defined as “a description of behavior abstracted through recognition of behavior for utilization.” [8] In this model, a function is represented as a combination of a body that carries meaning of the function, objective entities that a function occurs in, and function modifiers that detail the function body represented by adverb words like “precisely” or “firmly.” Because the FBS model adapts the language structure for the description of this model, the transformation of scenarios into this model is viable.

These three distinct approaches can be applied by using one scenario source that will be encoded by the structured framework, a P-DIF example. Scenarios provide coherent support to various design activities such as requirements engineering, usability engineering, and system engineering with their common design language [3]. Encoding the scenarios with the shared structure and framework, the P-DIF, enables the integration of the outputs from a variety of design activities.

The P-DIF encoded scenario is used to construct the selected models. To develop the DIF-based framework for encoding, the identification of necessary variables is required for constructing each model. Table 1 shows the P-DIF components with a part of the encoded data from the new scenario. These data are used for constructing the selected models.

![Figure 4: A TKS Model Generated from the New Scenario](image)

In this case, user knowledge structured through the TKS framework (Figure 4) provides design guidelines. Genericity and centrality define the arrangement of objects for the product interface. For example, a specific but crucial object should be located in an easily accessible place while a specific and optional object should be located in a hidden place because the user does not always need the function related to that kind of an object. The speaker phone function-related objects are an example of this situation.

Unlike the TKS framework, the CRC cards describe how the internal mechanism is structured for implementation. One example of the CRC cards on Figure 5 shows that the alphabet interpreter can be enacted to perform its responsibilities by collaborating with the alphabet sound recognizer or the address book.

Proceedings of the 7th World Multi-conferences on Systemics, Cybernetics, and Informatics, Orlando, FL, July, 2003
5. CONCLUSION AND FUTURE STUDIES

This case study demonstrates that encoding the scenarios of using a new product based on the structure of DIF provides an effective way of constructing various models of system implementation, and also enables the interpreted representation between those models to support the holistic development of the system. Through this research, the following were achieved:

- A holistic view of the problems through multi-aspect models in scenario construction; DIF provided the basic infra-structure to integrate the different aspects of use situations;
- Creation of an effective method for generating scenarios through use of aspect models based on the DIF structure;
- Evaluation of solution ideas in the early stage of the development process with scenarios, which can work as conceptual prototypes for simulating a use context;
- Generation of multiple aspect models from a scenario which can be inter-related in a structured way.

As an extension of the research, this mechanism can be used for other design activities, such as creating functional requirements and specifications for new solutions, as well as usability analysis with solution scenarios. For future development, what needs to be investigated are the issues of reconstructing scenarios by integrating different scenarios or of deconstructing a single scenario.

6. REFERENCES