Structured Planning

Introduction

Structured Planning is a process for finding, structuring, using and communicating the information necessary for design and planning activities. It is a front-end process for developing concepts.

A number of projects have been undertaken with it and used to continue its development. Among well over 60 of these, an early published project for Chicago’s transit authority (CTA) was Getting Around: Making the City Accessible to Its Residents (1972). In 1983, the House of the Future project won the Grand Prize in the Japan Design Foundation’s First International Design Competition. In 1985, a project on Space Station was undertaken for NASA; in 1987, the Aquatecture project again won the Grand Prize in the Japan Design Foundation’s Third International Design Competition. In 1991 Project Phoenix on global warming was honored as Environmental Category Grand Winner in Popular Science magazine’s "100 Greatest Achievements in Science and Technology" for the year. In 1993, two projects, NanoPlastics and Aerotecture, won awards and were widely publicized in Europe and Japan, and in 1995 the National Parks project developed plans for the future of the National Park Service. As the process has evolved, it has become an increasingly useful planning tool for products, systems, services and organizations. It is now being used commercially.

This document provides a general overview of Structured Planning using a 2001 project for the National Center for State Courts: Access to Justice: Meeting the Needs of Self-Represented Litigants.

Defining a Project

Projects cannot be prescribed absolutely. There is always something more to say about issues that should be addressed. Nevertheless, it is important to take stands on how a project should proceed in the early stages of specification. These stands, or positions, are formative and help to clarify issues and limitations that must be recognized, as well as special viewpoints that exist within the planning team.

The Structured Planning process begins with a Charter. This is a "brief" that sets out what must be done without overly burdening the project with preconceived ideas or conceptual frameworks.

Access to Justice
Develop integrated concepts for improving access to justice for those who choose or are forced to represent themselves in court.
Using Structured Planning methodology, conduct an advanced planning project to develop concepts for an integrated system solution. The proposed solution should be sustainable, scalable and adaptable to changing needs.

Figure 1. A Project Statement is a succinct sentence that describes the goal of the project in operational rather than noun-name terms.

The Charter serves as an initial communication vehicle between client and planners. It contains background, context, basic goals and a project statement that cuts to the heart of the planning task (Figure 1). Definition then builds around these foundation materials and project statement with the addition of "white papers" on issues that must be addressed. In the Structured Planning process, these are called Defining Statements.

Defining Statements serve to focus the project within the general direction of the project statement. They pick out issues that are important and suggest the specific direction that the project should follow with regard to them. The word issue is used advisedly with the intention that the subjects for Defining Statements should be particularly selected from topics that are controversial, or at least have plausible alternatives associated with them. Figure 2 shows two Defining Statement examples.
To make it easier for team members to cooperate in the generation of Defining Statements, they are carefully written to a common format. The format is five-part: (1) **Issue Topic**—one or two words establishing the subject of the Defining Statement; (2) **Question at Issue**—a short question raising an important issue under the topic; (3) **Position**—a sentence stating the position to be taken on the issue; (4) **Alternative Positions**—other plausible positions that were considered, but not taken; and (5) **Background and Arguments**—as much discussion as is necessary (in narrative form) to explain the reason/s why the position was selected (and why others were not). There are three kinds of Defining Statements, differentiated by the force they exert on the planning process.

Defining Statement

Issue Topic: Legal Procedures

Originator: Charles Owen

Contributors:
- **Constraint**: John Smith
- **Objective**: Jennifer Doe

Position

The system must establish and pursue policies to improve the quality and accessibility of legal procedures and information systems. This requires a combination of government and private sector support. The system must also establish a process for resolving disputes and avoiding costly litigation.

Alternative Positions

- **Constraint**: The system should focus on improving the quality of legal procedures and information systems, without regard to costs. The system should also provide a process for resolving disputes.
- **Objective**: The system should establish a process for resolving disputes, but not necessarily improve the quality of legal procedures and information systems.

Background and Arguments

Civil court procedures have evolved in complexity to the extent that, today, rather than promoting rights and guaranteeing fairness, they often actually impede the effective administration of justice. Layers of formal procedures (that serve the interests of lawyers more than those of either court or litigants) take up precious time, and continue and put litigants at serious disadvantage in navigating a labyrinthine legal process. The result is frustrating, costly—and largely unnecessary.

The problem for reform is to simplify processes for all users while staying within the spirit and principles of the law. These approaches merit consideration:

1. **First Model**: This approach attempts to establish a comprehensive and efficient process for obtaining information. It includes the gathering of information, the preparation of a report, and the presentation of evidence in court. This model has the advantage of being comprehensive and efficient, but it may be too rigid for some cases. It may also be too costly for some individuals.

 Question at Issue: What is the most effective way to obtain information in the legal process?

2. **Second Model**: This approach attempts to establish a comprehensive and efficient process for obtaining information, but it also seeks to simplify the legal process. It includes the gathering of information, the preparation of a report, and the presentation of evidence in court. This model has the advantage of being comprehensive and efficient, but it may be too rigid for some cases. It may also be too costly for some individuals.

 Question at Issue: What is the most effective way to obtain information in the legal process?

3. **Third Model**: This approach attempts to establish a comprehensive and efficient process for obtaining information, but it also seeks to simplify the legal process. It includes the gathering of information, the preparation of a report, and the presentation of evidence in court. This model has the advantage of being comprehensive and efficient, but it may be too rigid for some cases. It may also be too costly for some individuals.

 Question at Issue: What is the most effective way to obtain information in the legal process?

Constraints

These constraints are the strongest statements. They state what must or must not be done. The word **must** is used in the position statement to amplify the force of commitment.

Objectives

These goals are Defining Statements less forceful than Constraints, and more forgiving in their demands. It is possible to settle for less than complete satisfaction of an Objective, although the planning team will strive to achieve as much of its prescription as possible. The word **should**, which carries with it a sense of obligation, is appropriate for the position statement. In choosing between the Constraint or Objective labels for a Defining Statement, the decision is made with regard to the force of commitment that can
reasonably be expected. If achievement cannot really be guaranteed, the statement probably should be an Objective. Objectives can be thought of as having more of a scalable measure of achievement than Constraints, which tend to be thought of as thresholds that must be observed.

Directives are somewhat different from the other two statement types. In the hierarchy, they have the least force and, accordingly, are used for goals that are *desirable*. They are also used to express the biases of the planning team. Everyone brings biases of style or preference to the projects they work on. Some planners become well enough known for them that they are sought out for the very *brand* or trademark their style places on a project. Unfortunately, all biases are not readily observable, but that doesn’t mean that they should not be expressed! A major problem that often develops in client/planner relations stems from the failure of one or both parties to communicate the subtleties of their intent. The Directive provides a place for this kind of expressive statement. English also has a nice wording for this level of commitment: *ought to*. The words suggest almost a moral or ethical force—appropriate for a bias or a statement of style.

Developing Information

All things exist in time. They are not unchanging, and they cannot be designed without regard for the way they operate and are used over time. Any product can be viewed as a system operating with a user or users in different ways that are appropriate for its modes of existence. To plan effectively, a planning team must recognize these **Modes**, identify **Activities** that occur in them, and isolate the **Functions** that the system must perform (or the user must perform for it) within each Activity (Figure 3).

![Diagram of System Modes](image)

Typical Modes through which familiar hardware systems pass include: manufacture, distribution, transportation, storage, use, maintenance, repair, and retirement. For any given system, these may be replaced, augmented or supplemented with others; and major Modes may be subdivided into Submodes specialized for the individual case. In this project, the Modes were Diagnosis, Preparation to Initiate Proceedings, Alternative Dispute Resolution (ADR), Hearing, and Enforcement. Listing the Modes is generally not difficult, and the stage then is set to identify Activities that take place within them.

By definition, an **Activity** is a set of purposeful actions taken by users and system in an environmental setting. The actions of an Activity, thus, should be cohesive enough in purpose to be thought about collectively. Two difficulties make it hard to assign titles to Activities. First, the general complexity of real-life systems tends to make it difficult to bound Activities neatly. Second, the multiplicity of word choices available makes it difficult to find the right set of titles to achieve an intellectually satisfying balance. By trial and error, however, it is usually possible to name a set of Activities satisfactorily to cover the actions of a Mode neatly.
As a way to begin an analysis, it is helpful to think of Activities as scenes in a play. The analogy is completed by thinking of the set on which the play takes place as having props that are actively used in scenes (the system components) and others which provide background (environmental components). From scene to scene, new props may move into the center of attention, while ones of previous interest become background. Users, in the analogy, are the actors. The roles they assume reveal the special characteristics of users’ interests.

Setting the stage for an Activity and playing out the scene enable the planning team to see the Functions that are involved in the "performance". It is these that must be identified, since these are, ultimately, what the system must do well (or help the user to do well). Each Activity entails the performance of a number of Functions, either by the system or by its users. Whether these Functions are retained in their original user or system categories in the final design is unimportant; Functions can be assigned and reassigned fluidly between user and system to obtain the best resolution of the problem within the set of Defining Statements. What is important is that a good coverage of the Functions is obtained.

Half of the purpose of the foregoing process is the enumeration of Functions. The other half is the development of information about these Functions that will shed insight on what happens as they are performed.

Treating the system to be designed as a user/system model allows it to be analyzed from the perspective of the system or of the user. From the system standpoint, classic systems analysis observes operations and determines relationships among components—toward the creation of a system model with features that can be described and processes that can be simulated. The analysis of Activities scrutinizes users’ actions for the purpose of building an organization of Activities describing user behavior. Both kinds of analysis are useful for producing hard data and constructing a model. In fact, the process model just discussed draws from both. But the hard data is not enough to guarantee a good conceptual design.

What is necessary is insight; information as distinguished from data. Information has surprise—it reveals something not known before, or not thought of in the same way before. In the search for patterns, data may lead to information; when it does, a considerable amount of data may be distilled into a much smaller (and more manageable) amount of information, producing what is most useful to the conceptual planner: real insight into the nature of a problem. This frequently can only be expressed in soft or qualitative terms, a form difficult to deal with by quantitative means—but most valuable for the generation of ideas.

In the Action Analysis process, Functions are associated with insights—about why things go wrong in performing the Functions, or about how special factors combine to allow other Functions to be performed well. These insights are documented as Design Factors and become part of a qualitative information file along with the Functions.

Activity Analysis forms (left in Figure 4) record information at the Activity level. Design Factor forms (right in the figure) document insightful observations and ideas associated with the Functions of an Activity.

The Activity Analysis form is divided into three sections. In the first section, at the top, the scene is set. Users are listed by roles or types, and system and environmental components are identified. In the
sections below, Functions are listed either as actions taken by the system or actions performed with the system by users. As they are developed, Design Factors listed to the right of the Functions to which they pertain.

Formats for naming Functions and Design Factors are fixed. Since a Function is essentially an action or maintenance of a condition, the most natural way to describe it is with a verb phrase. Design Factors are about problems and insights. To make titles for them most useful, they should capture in a concise phrase the essence of the insight the analyst has realized. In that way it is most likely to remind planners accurately of the problem (or opportunity) when they see it.

The Design Factor document contains a number of entries. Its primary purpose, however, is the provision of information of two kinds: information about the problem (or opportunity) detected, and information about what might be done about it. The fact that problem and solution are both covered in the same document is not accidental. It is important that when insights are recognized, ideas be sought for how to use them. These ideas may not be used in a final concept for the system, but they are important as progenitors and are used in structuring the information file later in the process.
The **Observation** section is the first of two sections dealing with the problem. An Observation is a sentence in which an insight about the performance of a Function is recorded. As much as possible, it should *distill the essence* from the observed phenomenon. Frequently it is helpful to express the sentence in a condition/occurrence format. In this format, a condition is defined in a dependent clause; and an occurrence that takes place when this condition is present is described in a following independent clause. If this format is used, the conjunctions "if", "when", "while", "because", "where" or others may be helpful in introducing the condition. It is important, however, not to overstate (or overrate) the certainty of the relationship between condition and occurrence—the term **Observation** is meant to indicate that a phenomenon is observable, nothing more. A cause/effect relationship should not be inferred when, in fact, that strong a relationship cannot be justified (more than one cause may be required for the effect; the effect may be one of many and not justifiably isolated; the effect may not always follow from the cause; etc.).

Associated with the Observation section is a section labeled **Extension**. In this section, explanatory material is placed to extend or develop the information of the Observation. No matter how thoughtfully worded, the single sentence of the Observation seldom is enough to convey the insight adequately. The *whys* and *what-do-you-means?* that inevitably are asked are addressed in the Extension. Supplementary material from other sources may be discussed; examples may be cited; contributing phenomena other than those mentioned in the Observation may be introduced; side effects may be considered. After examining the Extension section, readers should have a good understanding of the insight of the Design Factor. They should be able to appreciate its value and, perhaps, even anticipate the directions for using it that will be suggested in the next sections.

The first of two sections dealing with ideas is the **Design Strategies** section. Design Strategies are, by definition, generalized suggestions for how to react to the information of the Observation and its Extension. They express the *implications* that this information has for design. For a format, they take an imperative verb phrase, carefully crafted to prescribe an approach without specifically describing a solution. Typically, Design Strategies are specialized for the situation from general strategies for problem solving such as: confront the problem, remove the cause of the problem, avoid the problem, block the problem, divert the problem, break up the problem, reduce the problem, etc.

The **Solution Elements** section is the second solution section. Specific ideas go into this section. Solution Elements are ideas well enough described to be evaluated as useful to the system being developed. They do not have to be original; in fact, they are distinguished as being *existing, modified* or *speculative*, depending on the level of innovation that the planning team feels that it has contributed. They are important for determining interaction among Functions (as shall be discussed) and may actually be used in the overall solution, but they should not be overly valued at the time they are written. For a name format, they take a noun phrase. Noun phrases express concepts well and are easy to remember—especially if they include colorful phraseology. A good name for a Solution Element has an adjective and a noun chosen to create an evocative title. Such a title, once explained, is readily retained in memory, and a wealth of detail associated with the concept is usually recalled with it.

Other sections on the Design Factor form serve administrative needs. The **Originator** section records the author of the Design Factor. The **Associated Functions** section ties the Design Factor to the Functions for which it was written (the title should appear as it does on the Activity Analysis forms). The **Title** block names the Design Factor and is the name found on the Activity Analysis form as the Associated...
Structured Planning

Design Factor for a given Function. For Source/s, an entry following standard bibliography format is used (with footnote entries in the text to locate specific reference pages). If the information is derived from the Originator’s direct observation or personal experience, the Source entry may read "Personal observation".

Solution Element documents (Figure 5) detail the ideas noted on Design Factors. These documents are one-page, short forms designed to capture enough detail about ideas to give them substance when they are needed later. Besides the same kinds of reference blocks used on Design Factors and Defining Statements, they have three important sections. The first, Description, is for a short, one or two phrase explanation of what the Solution Element is. This is expressed at a general level and should be just enough to identify what it is and what it does at a high level. The other two sections, Properties and Features, isolate the specific aspects of the idea that give it its identity.

Properties are what it is. Expressed in noun phrases, a series of bullet lines establish what functional entities need to be present to make the concept work. Features are what it does. Verb phrase bullet lines do the same thing for its benefits. Essentially, the Properties are what the design and/or engineering teams will want to know (what has to be developed), and Features are what the communications, and/or marketing teams will need (why someone will appreciate it).

The simplicity of the Solution Element form and the directness that it requires for description give it its value. In the press of analysis, observation and search for understanding, many insights unfold and many ideas emerge almost unbidden. In conventional processes, these are mostly lost for lack of any systematic way to capture them. In Structured Planning, the Solution Element form is the tool for capture.

The results of the Action Analysis process are collected in a Function Structure (Figure 6). The Structure reveals the what must be accounted for by the project in both breadth and depth, and provides a visually convenient means for judging the coverage of the analysis process. The product of the Action Analysis process is actually much more, of course. Three sets of critical information have been obtained: a set of Functions, a set of insights and a set of ideas—the latter two described in Design Factor and Solution Element documents.

Paradoxically, as useful as the Function Structure is for establishing coverage, it is not the best form of organization for developing concepts. Organizing information for use in concept development is the job

Advanced Planning for Business, Institutions and Government

Charles L. Owen

7
of two computer programs, RELATN and VTCON. These programs incorporate specialized theory for how information should be structured for the synthesizing phase of planning.

Figure 6. Action Analysis produces a Function Structure by top-down examination of Modes and Activities. In this example, the Modes are in bold, the Activities are in bold italic (at the bottom of the hierarchy), and the Functions are in columns below the Activities.

Structuring the Information I

If there are few Functions to consider, a project can be managed without much trouble. It does not take very many Functions to change that situation, however. Over 20 to 30 Functions to manage almost always means that some kind of organization must be attempted to bring order to the process. Assuming that any project of interest will have hundreds of Functions, the nature of the organizational scheme becomes a matter of importance.

How should Functions be organized? The conventional way to organize almost anything is to look for similarities among the items to be classified and to put like items together. Sometimes the categories are preselected and the likenesses measured are those between items and ideal members of the categories; sometimes (as in numerical taxonomy) the categories are defined in the process by the natural grouping of like objects on a number of preselected characteristics or attributes. A number of theoretical models have been developed for the clustering of items in this way, and computer programs exist to do most of the work. The question is: is similarity, however it is employed, the best relationship to use for...
organizing Functions? Christopher Alexander suggested another way of thinking that leads to a much more sophisticated concept for organization.

The controlling factor for whether two Functions are related from the planning standpoint is not whether they are alike, but whether they share potential solutions—or, put more correctly, whether a significant number of their potential solutions are of concern to both Functions (Figure 7). This includes, in a sense, whether they are unlike because of their potential solutions. The concept, once examined, is very appealing. In the first case, if planners consider those Functions together that have a number of potential solutions in common—that is, a solution for one Function also, in some way, is a solution for a second Function—there is an excellent chance that they will be able to fine-tune one or a few solutions so that they will meet the requirements of the Functions under consideration very well. In the second case, if they can see Functions together that have potential conflict problems because of some of their potential solutions (a solution for one Function, if accepted for the overall system concept, aggravates or prevents meeting the needs of a second Function), they have the opportunity early-on to select or devise solutions that will avoid the difficulties.

The RELATN program uses this concept to establish links between Functions based on the Solution Elements given for a project. How it does this can be illustrated with two diagrams. In the first diagram (Figure 8), the "bull’s-eye" represents a two-part abstract space that contains all of the Solution Elements for a project that in some way are of concern to a Function (Function 1, for example). The diagram has a bull and a ring because some of the Solution Elements help to fulfill Function 1 (+), and some—if they are used to fulfill other Functions in the project—will make it difficult to fulfill Function 1 (-). Both kinds of Solution Elements are obviously of concern. There are, of course, other Solution Elements in the collection for the whole project; they are represented in this diagram as being outside the bull’s-eye space (0), because they have no bearing on Function 1—they neither support nor obstruct its fulfillment. On the left in Figure 8, the spaces are shown; on the right, the Solution Elements of Figure 7 have been inserted for Function 1.

In the diagram of Figure 9, a similar bull’s-eye for Function 2 is combined with that for Function 1. The intersection of the two creates regions with all the possible combinations of the characteristics from the two original bull’s-eye diagrams. The pairings of positive, negative and zero values indicate the support or obstruction the Solution Elements from which Solution Elements might be chosen for a design.

The RELATN program uses this concept to establish links between Functions based on the Solution Elements given for a project. How it does this can be illustrated with two diagrams. In the first diagram (Figure 8), the "bull’s-eye" represents a two-part abstract space that contains all of the Solution Elements for a project that in some way are of concern to a Function (Function 1, for example). The diagram has a bull and a ring because some of the Solution Elements help to fulfill Function 1 (+), and some—if they are used to fulfill other Functions in the project—will make it difficult to fulfill Function 1 (-). Both kinds of Solution Elements are obviously of concern. There are, of course, other Solution Elements in the collection for the whole project; they are represented in this diagram as being outside the bull’s-eye space (0), because they have no bearing on Function 1—they neither support nor obstruct its fulfillment. On the left in Figure 8, the spaces are shown; on the right, the Solution Elements of Figure 7 have been inserted for Function 1.

In the diagram of Figure 9, a similar bull’s-eye for Function 2 is combined with that for Function 1. The intersection of the two creates regions with all the possible combinations of the characteristics from the two original bull’s-eye diagrams. The pairings of positive, negative and zero values indicate the support or obstruction the Solution Elements from which Solution Elements might be chosen for a design.
Functions. Using these five regions, the amount of interaction between the two Functions (the degree to which the two Functions are related) can be established.

In the (+,+), region are the Solution Elements that fulfill both Functions. These are, in a way, the elegant solutions because each fulfills both Functions at once. The (+,0) and (0,+), regions also contain Solution Elements that might be used with confidence. Two Solution Elements, one from each of these regions, would create a total solution for the two-Function system. While not as elegant, this set of choices at least does not introduce difficulties and, in fact, the independence thus identified may be important in some planning considerations. The two remaining regions, (+,-) and (-,+), are troublesome. A Solution Element chosen from either will create a situation in which it will be difficult to successfully fulfill the Function for which the (-) value was given. Based on the effect they have on the two Functions, the five regions are labeled: reinforcement (+,+); independence (+,0) and (0,+); and conflict (+,-) and (-,+).

The concept of interaction can be drawn intuitively from the diagram. Assuming that the reason two Functions should interact (or be linked) is that they have potential solutions of concern in common, the amount of interaction should be proportional to the number of Solution Elements in the common regions of reinforcement and conflict relative to those in all five regions including those and the two independence regions (Figure 10). None of the other regions is relevant because no Solution Element would be chosen from them to fulfill either Function. Thus, in its simplest form, a measure for interaction is the ratio of the number of reinforcing and conflicting Solution Elements to those plus the number of independent Solution Elements.

In the RELATN program, the interaction concept is extended with three additions. First, instead of simply counting the presence of Solution Elements in a region, the program accepts scaled evaluations for how much a Solution Element supports or obstructs fulfillment of a Function. Scales may be of any resolution, but usually have five values: strongly supports (+2), supports (+1), no bearing (0), obstructs (-1) and strongly obstructs (-2).

Second, weights are accepted for the Solution Elements. With weighting, the impact of any Solution Element can be increased or decreased in its effect on the amount of interaction. Weights typically are used to reflect the likelihood that a Solution Element will be used in the final system solution—some ideas are more practical than others, for example; or some may be favored or even required by constraints placed on the project.

Finally, a balancing factor is incorporated to take care of the problem that some Functions have more Solution Elements of concern than others. The problem arises when a Function with only one or two positive Solution Elements is considered with one that has many (fifty would not be uncommon). If they have one common Solution Element in the reinforcement or conflict regions, what should the amount of interaction be? Intuitively, it is different depending on which Function’s viewpoint is chosen. The balancing factor finds a middle ground.
To prepare for using the **RELATN** program, the planning team assesses the collective set of Solution Elements against the set of Functions (Figure 11). Data for each Solution Element includes its name, weight and the scale used to assess it (different scales can be used for each Solution Element—although, in practice, a common scale is usually used for all). Data for each Function includes the Function’s name and value assessments for how all the Solution Elements support or obstruct it. Experience has shown that the considerable job of assessment can be made manageable by splitting up the task among the team members. The Functions are divided up among two-member subteams. Each subteam assesses all Solution Elements for its subset of the Functions. Both subteam members independently do the entire assessment for their subteam’s Functions and then compare results. Consultation (the greatest time demand) is, therefore, only required for disagreements. The loss of accuracy (agreement of the results with what would have been derived from a full-team consensus on each assessment) has been acceptably small in test comparisons.

The result of operations with the **RELATN** program is a nondirected graph, or network, in which Functions are the vertices (or nodes). Links between Functions indicate which Functions have enough interaction to warrant being considered together in any conceptual development activity (Figure 12). For many purposes, this level of organization is sufficient; but for most planning projects, further structuring is valuable.

Structuring the Information II

Another program, **VTCON**, is called into play to provide additional structure beyond that inherent in the graph. The graph establishes paths through the Functions by linking Functions when they are related to each other, but, unlike a road map, a graph is not necessarily arranged nicely for visual inspection. As it is obtained from the **RELATN** program, a graph is only a list of what Functions are linked to what other Functions. To draw out the analogy, it is like being in a town and having a list of towns that are next on each road out of town, but not being able to find out whether any of those towns have roads between them without going to one of them or consulting a similar list of roads for each town. If a bird’s eye view were possible, clusters of towns interconnected by roads...
would be obvious. Unfortunately, for complex graphs, endless visual interpretations are possible, and it is extremely difficult to show one as an optimally arranged "map". What can be done—and what the VTCON program does—is to find the clusters of Functions (vertices) algorithmically (Figure 13). With that information, the purposes of the map can be achieved.

The clusters are important because they represent primary groupings of Functions. Once the clusters have been found, the planner can choose a Function at will and know which other Functions are of direct concern. Of course, Functions are also linked to others outside their primary clusters or the graph would be unnaturally disjoint. These cross-cluster links provide the basis for higher level, broader-reaching clustering, and VTCON uses them to create a condensation hierarchy (Figure 14). Clusters are themselves clustered based on Functions held in common and links between Functions in different clusters. Levels of hierarchy are produced with smaller numbers of larger clusters at each succeeding level until the entire graph is condensed into a final cluster, the original set of all Functions. In form, the hierarchical structure is a semi-lattice rather than a tree because Functions can be in more than one cluster and clusters can be themselves members of more than one

Figure 14. Continued clustering at successively higher levels by the VTCON program produces a hierarchical organization of the entire set of Functions—an Information Structure useful for concept development and evaluation.

Figure 15. The Information Structure produced by the VTCON program for the Access to Justice project.
higher level cluster. This is a very general form of hierarchy and one most appropriate for planning—where it is natural to expect a Function to be performed in more than one Activity. Functionally, the hierarchy is an **Information Structure**, a specialized structure for synthesis. The actual Information Structure developed for this project is shown in Figure 15.

![Diagram of Information Structure](image)

Figure 16. A cluster from the Information Structure (306) is subjected to Means/Ends Analysis to establish meaning for the structure. Beginning with the **Functions** at the left, clusters are given labels that express the functionality of the structure as insightfully as possible.

Using the Information

The results of the **VTCON** program are given in three parts: (1) a list of the primary clusters with their component Functions, (2) a compilation of links within these clusters and links between clusters as they are revealed in condensing clusters at succeeding higher levels of the hierarchy, and (3) the Information Structure, a listing of the hierarchy giving the clusters at each level by code name (e.g., 302, meaning "level 3, cluster 2") with their next-lower-level component clusters. This information enables the Functions, Design Factors and Solution Elements to be brought together for optimal support of the ensuing processes of synthesis.
Several means for synthesis have been developed in Structured Planning. Each has certain strengths, and combinations are possible.

The technique used for this project reconstructs a traditional idea-generating process, Means/Ends Analysis, as two complementary processes: Means/Ends Analysis and Ends/Means Synthesis. To begin, a cluster of workable size is selected from the Information Structure and transferred as structure (subcluster numbers and membership information) and Functions (list) to a Means/Ends form (Figure 16).

Figure 17. A segment of the named Information Structure show the results of the Means/Ends Analysis process. Function names filled in, along with named clusters, help the team to see order and pattern.
The task of Means/Ends Analysis is to create labels for all clusters. Moving from left to right through the subclusters, the question is asked, "To what end are these Functions means?" The answer is purpose expressed in the format for an Activity or, at higher levels, a Mode or Submode of operation.

When the wording of all the labels has been fine-tuned in the context of a completely labeled Information Structure (see a partial example in Figure 17), clusters are subjected to Ends/Means Synthesis. In this process, just the opposite activity occurs. Where the essence of the Means/Ends Analysis was the "discovery" of purpose seen freshly, the essence of the Ends/Means Synthesis is the "invention" of concepts to accomplish these purposes. In Figure 18, the same cluster given labels in Figure 16 is now re-examined as a challenge for invention. The highest level "purpose" is treated as the ultimate end to be reached, and the question is asked, "What means would meet this end?" New means are then generated left to right, increasing in specificity as preceding means are treated as new ends. Much as Design Strategies are treated in Design Factor documents, means are best stated as imperative verb-phrase "strategies". When ideas for means become specific enough to be final Elements of the
solution package, they are given evocative noun-phrase titles (as Solution Elements were) and status as System Elements.

Labels given for subclusters at intermediate levels in the Means/Ends Analysis of the chosen cluster are checked for coverage as the Ends/Means Synthesis progresses, and Solution Elements originally conceived for the Functions involved are constantly reviewed as possible end products. New ideas, however, are encouraged, and original ideas may be modified or combined in the light of the ends/means that evolve.

![Figure 19. Features of the System Elements are cross-checked against Functions for each key cluster to how needs are being met. Large squares indicate strong contribution to fulfillment, small squares indicate partial contribution.](image)

What remains is to describe the properties and features of the System Elements, ensure that there are ideas to fulfill all the Functions, and consider the System Elements against each other to draw out all systemic properties that can be gained. For the first of these tasks, the team begins to fill out what will become a System Element form (Figure 21). Although this task will have to be addressed later for
Structured Planning

completion, it is usually best to collect properties and features for an idea at the time the idea develops. Elaborations can be made at any time—if something has been recorded to elaborate upon.

The second task, checking features against required Functions, is accomplished on a tabular form, shown in Figure 19. Features are evaluated here for their contribution to fulfilling the Functions present in the primary clusters of that part of the Information Structure being addressed in the Ends/Means process. If a feature contributes significantly to fulfilling a Function, the feature/Function cell is marked boldly; if there is some contribution, the cell is marked, but less boldly. In practice, a three-option decision scheme (significant contribution, some, none) works well. A special value of this activity is that, in the process of considering how a feature of an idea may help to fulfill a Function, the thought process about how that specific fulfillment occurs often helps to crystallize the nature of the feature and the properties that generate it. Additional features may also occur to the team at this time and, of course, if there are Functions for which there are no System Elements, this is the signal to return to the Ends/Means process for more work.

Figure 20. Systemic associations are strengthened and created using System Element Relationships worksheets. The direct confrontation of System Elements with each other generates ideas for how they can work together more fully. All pairings can be examined systematically, or groupings (as in this case) can be explored for special associations.
Finally, the third task pits System Element against System Element in a search for additional synergies that can contribute to systemic qualities. At this stage, although the Ends/Means process is complete, it is still possible to mold System Element properties and features in ways to optimize system functionality. Figure 20 shows a form used to consider System Elements four at a time against four others. The boxes in the form are used to note ways in which the pair of System Elements can work together. Rather than simply recognizing relationships, the planning team proactively seeks out ways for the System Elements to work together—to the extent of modifying one or the other, or both, to create synergy. Any changes are incorporated in the properties and/or features of the individual System Elements. At this stage of the synthesis process, when the system is at a high level of description and the team knows more about it than it ever has, it is the best possible time to extend ideas to higher levels of cooperation. The systematic consideration of relationships is a powerful creative tool.

The organization provided by the Information Structure and the synthesis support processes for using it give the planning team the bird’s eye views they need of the problem. Information is juxtaposed insightfully with effectiveness well beyond the capability of conventional information retrieval systems. The effect is having at hand not only what you need to know, but also what you didn’t know you needed to know!

Communicating the Concept

The product of the Structured Planning process is a Plan, made up of System Elements (Figures 21, 22 and 23) that describe the ideas developed to meet the needs of the project as they are outlined in the Charter and Defining Statements and refined through the Action Analysis process. Each System Element has five major parts:

Title. The title is no more than a few words (two or three, typically), in a noun phrase that captures the essence of the System Element. A good title is unique and memorable.

Related System Elements. Other System Elements that ought to be read with this one are listed in this section. The best grasp of a complex concept is achieved when ideas are appreciated in a meaningful order. Especially when there are large numbers of System Elements, there is a need to know which are strongly associated. Establishing the multiple relatedness of Elements is a hypertext concept; it allows the Plan to be examined in more than one way—with options suggested, but the actual order determined by the reader. For a large number of System Elements, the structure of association can be further extended by using VTCON to create a hierarchical Communication Structure in which clusters and hierarchy are established under the relation, "should be considered together".

Superset Elements and Subset Elements. In the process of organizing the System Elements (possibly using VTCON), it is frequently possible to group them hierarchically. The System Element form has provisions for indicating higher and lower level associations where they exist as superset or subset relationships.

Properties. Expressed in the same noun-phrase, bullet format as they were for Solution Elements, Properties are what it is. Together with Features, these are the essential "specifications" for what the System Element must be and do.
Figure 21. As elements of a Plan, System Elements present individual concepts describing ideas and specifying essential properties and features.

Features. These are verb-phrase, bullet lines highlighting the special functions that the System Element performs—what it does. They point out what is expected of the final product in as general terms as possible; specifying without over-specifying. A balancing act is required here (as well as for Properties) to provide sure guidelines without taking away too much of the maneuvering room required for creative work by the follow-on design team charged to develop the details.

Building on the hill-climbing metaphor often used in optimization theory, good Properties and Features will keep the design team climbing the right hill, but will let them find their own best path to the top.

Fulfilled Functions. This section lists simply the Functions (from the entire Function list) that the System Element fulfills. The Function list allows the design team to track the solution back to the Functions that were considered by the concept development team.

Associated Design Factors. Along with Fulfilled Functions, this section provides "track-back" information that helps the design team to understand the motivating insights that led to the ideas incorporated in the System Element.

Discussion. A full narrative description of the idea is given in the discussion section, including reasons for why the form evolved as it did. The concept development team uses this section to provide all the...
Structured Planning

detail that has surfaced in the planning process, even though the purpose of the Plan is to express concept rather than detail. In effect, what is said to the design teams who will continue on is: "Use this if you don’t come up with better ideas". Diagrams, mathematical analyses, drawings, photographs—even video clips and animations, if the medium of the Plan can support them—may be used here to supplement the text. The goal is to make the description as helpful as possible. No limit exists for the discussion section.

Scenario. Where the Discussion illuminates the structure of the System Element with regard to its essential components, the Scenario does the same thing for the way it works. The best static description never quite explains as well as following an example in operation. The Scenario employs that insight to provide a dynamic description. Expressed in present-tense style, the scenario delivers a user’s-eye view of the System Element’s features in action.

Conclusions

Generally speaking, two schools of thought exist on the structure of the planning and design process. In the simplest formulation of the traditional model, the process flows from analysis to synthesis to evaluation. More complex versions break down the three phases into substeps and introduce feedforward loops, but the procedural dependence remains intact—analysis is done before synthesis, and synthesis is done before evaluation.

The conjectural/evaluative model challenges the lockstep relationship of the phases. In this version, ideas are generated and evaluated as they take form. Advantages are that ideas are less likely to be lost and that mistakes can be detected earlier. In a large project, this may mean avoiding massive redesign. To use this approach, however, there must be effective means of evaluation along the way. An appropriate model is the apprentice under continuous review by the master—the master not only reviews the work incrementally, but possesses the sum of experience and information necessary for judgment on a global as well as local basis. For a process to work in like fashion for a planning team acting as its own master, information should be explicit, available in detail, insightful enough to provide bases for both invention and evaluation, and richly cross-related.

Figure 23. Completing the System Element is a Scenario that complements the static Discussion with an active description of the concept in operation.

Not coincidentally, the Structured Planning process has the means to take advantage of the conjectural/evaluative approach. First, there must be a way of knowing what to work on: the information base produced by Action Analysis provides that. Second, there must be a way to know whether an idea is contributing to a good solution: the Design Factors in the information base provide that at a local level,
and the Defining Statements provide it at a global level. Third, there must be a mechanism to ensure that the planning team is not "climbing the wrong hill" in the parlance of optimization theory—creating piecemeal solutions that will be less than optimal once other Functions are considered. The structuring induced with the RELATN and VTCON programs reduces that danger significantly by tying together those Functions which ought to be considered concurrently.

The best approach to structure for the planning process, however, should use the best of both schools of thought. Good design philosophy refutes the folk adage, "You can’t have your cake and eat it too"—in fact, creative thinking quite often finds a way to blend seemingly independent or even opposing ideas into a single, better solution. A perceptive planner tries never to be placed in the position of having to choose among goods; it is far better to think a bit harder and create one more alternative that integrates the best features of the competing choices. So, too, in this case.

The good in the traditional process model maximizes incubation time, holding off final ideas and evaluation of them until the last possible minute. As any planning or design project leader knows, more becomes known as the project proceeds, and the most is known at the end. The longer decisions can be responsibly delayed, the better is the chance that a more creative, higher-quality end result will be achieved.

The conjectural/evaluative model optimizes situational creativity, encouraging ideas when they occur and significantly reducing the likelihood that good ideas will be forgotten before they are considered "at the proper time". It also directs the progress of a project earlier because it encourages evaluation and, therefore, selection of ideas, as information is uncovered. Projects developed in this way are less likely to swing widely from concept to concept in later stages of synthesis.

Structured Planning draws from both models. Action Analysis dynamically juxtaposes discovery and invention in the creation of Design Factors, pressing early in the project for insights and ideas for how to use them. The virtues of the conjectural/evaluative early-action model are incorporated in that process. The strength of the traditional model appears when the information from Action Analysis, structured for optimal order of consideration, is finally arrayed for synthesis. The selection, modification and invention of ideas takes place then in an information environment rich in ideas—and steeped in the seasoning of incubation.

Planning and design are complex tasks. Products and systems can be made without good planning and design, but excellent products and systems cannot. Today, quality standards and development cycles do not permit the luxury of random success. The planning process must be reliable and predictable; reliable in that it can be depended upon to produce excellent concepts, predictable in that it can be expected to produce them on demand. Structured Planning is designed to meet those constraints.